
Prof. Seema Patil.et.al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 3, (Part -5) March 2016, pp.39-44

 www.ijera.com 39 | P a g e

 Enhancement in Web Service Architecture

Prof. Seema Patil
 1
, Prof. Suman Tanwar

2
, Prof. Manisha Tijare

3

1,2,3
(Department of Computer Science, Symbiosis Institute of Technology, Pune.

ABSTRACT

Web services provide a standard means of interoperating between different software applications, running on a

variety of platforms and/or frameworks. Web services are increasingly used to integrate and build business

application on the internet. Failure of web services is not acceptable in many situations such as online banking,

so fault tolerance is a key challenge of web services. This paper elaborates the concept of web service

architecture and its enhancement. Traditional web service architecture lacks facilities to support fault tolerance.

To better cope with the fundamental issues of the traditional client-server based web service architecture, peer to

peer web service architecture have been introduced. The purpose of this paper is to elaborate the architecture,

construction methods and steps of web services and possible weaknesses in scalability and fault tolerance in

traditional client server architecture and a solution for that, peer to peer web service technology has evolved.

Keywords – Web services, fault tolerance, client-server, peer to peer

I. INTRODUCTION

Web Service is a software system designed

to support interoperable machine to Machine

interaction over a network. Web Services can

convert your application into a Web-application,

which can publish its function or message to the rest

of the world. Web Services are self-contained,

modular applications that can be described,

published, located, and invoked over a network,

generally, the Word Wide Web.

The architecture of a Web Services stack

varies from one organization to another. The number

and complexity of layers for the stack depend on the

organization. Each stack requires Web Services

interfaces to get a Web Services client to speak to an

Application Server, or Middleware component, such

as Common Object Request Broker Architecture

(CORBA), Java 2 Enterprise Edition (J2EE), or

.NET.

Although there are variety of Web Services

architectures, Web Services can be considered a

universal client/server architecture that allows

disparate systems to communicate with each other

without using proprietary client libraries. This

architecture simplifies the development process

typically associated with client/server applications

by effectively eliminating code dependencies

between client and server" and "the server interface

information is disclosed to the client via a

configuration file encoded in a standard format

(e.g.WSDL)." Doing so allows the server to publish

a single file for all target client platforms.

Related Paper

The Web Services architecture describes

principles for creating dynamic, loosely coupled

systems based on services. There are many ways to

instantiate a Web Service by choosing various

implementation techniques for the roles, operations,

and so on described by the Web Services

architecture.

A mechanism, called CoRAL, provides

high reliability and availability for Web service.

CoRAL is client-transparent and provides fault

tolerance even for requests being processed at the

time of server failure. CoRAL does not require

deterministic servers and can thus handle dynamic

content. For dynamic content, the throughput of a

server cluster is increased by distributing the

primary and backup tasks among the servers. For

static content, that is deterministic and readily

generated, the overhead is reduced by avoiding

explicit logging of replies to the backup. In the event

of a primary server failure, active client connections

fail over to a spare, where their processing continues

seamlessly. [6]

The model in [7] describes a model by

extensions of the SOAP standard and passive

replication technique to achieve fault tolerance. This

model carries out alterations on the WSDL

document inserting information related to the

primary replica and the backup replicas. It uses

interceptors in the SOAP layer for redirecting of the

requests to replicas in case of fault in the primary. of

faults and replica management. This In the

infrastructure of model, using interceptors is limited

to fault detection in the infrastructure itself, allowing

in case of faults on the primary WS Dispatcher

Engine requests can be referred to a WS Dispatcher

Engine backup.

The Construction of Web Service

Several essential activities need to happen

in any service-oriented environment:

RESEARCH ARTICLE OPEN ACCESS

Prof. Seema Patil.et.al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 3, (Part -5) March 2016, pp.39-44

 www.ijera.com 40 | P a g e

1. A Web service needs to be created, and its

interfaces and invocation methods must be

defined.

2. A Web service needs to be published to one or

more intranet or Internet repositories for potential

users to locate.

3. A Web service needs to be located to be invoked

by potential users.

4. A Web service needs to be invoked to be of any

benefit.

5. A Web service may need to be unpublished when

it is no longer available or needed.

Web Services architecture then requires

three fundamental operations: publish, find, and

bind. Service providers publish services to a service

broker. Service requesters find required services

using a service broker and bind to them.

Web Service is a service-oriented

architecture which is based on the interaction among

service provider, service broker (service register

center) and service requester. This interaction

involves publishing, query and binding operation.

The architecture of Web Service is shown Figure 1.

Figure 1 the architecture of Web service

Two main compositions of Web Service are:

Service:
Web Service is an interface described by

service description and the implementation of

service description is just the service. Service is

software module and it is deployed on the platform

which is accessed through Internet and provided by

service provider. The purpose of service is to be

called by service requesters or interacted with them.

During the implementation of the service, if it calls

other Web Services, it can be considered as a service

requester.

Description of service:

Service description includes the interface of

services and the details of their implementation such

as the data type, the operation, the binding

information and the network position of Services. It

may also include the classification which is

convenient for service requesters to discover and use

as well as other metadata. Service description can be

published to service requesters or service register

centers. The construction of Web Service includes

three steps:

1. The first thing is to construct the software

modules which can provide services, which is

usually implemented through component such as

COM Component and .NET Component. These

components are the core of Web Service and the

implementation part of the services provided by

Web Service.

2. Defining the description of service interface. The

service description is regarded as the WSDL

contract which is the most important information

that can be provided by Web Service. The client

application locates the Web method of some specific

Web Service through WSDL document.

3. Web Service publishing. The process of

publishing is similar to that of publishing a web site.

In Windows operation System, Web Service is

usually deployed on IIS (Internet Information

server).

The construction of the components which

can provide services is the key step. It determines

the actual function provided by Web Service.

However, viewed from the essence, the components

in Web Service have no difference from those in

ordinary programs. Therefore, the previous methods

and technologies of component construction such as

the object oriented technology; interface-oriented

programming can be used for constructing the

components in Web Service. As Web Service is

independent on concrete programming language, so

COM component developed with VB, VC can be

considered as component of Web Service and .NET

component developed with the programming

language of .NET such as VB.NET, C# can also be

implementation of services provided by Web

Service. At the same time, tools can be used for

defining the description of service interfaces, in

other words, creating WSDL documents. For

example, WSDL document of COM component can

be generated by SOAP Toolkit, while .NET

component’s can be created by Visual Studio .NET

integrated development environment. Finally, IIS

virtual directory can be created on Web server to

deploy Web Service. At this time, client can test and

use the functions provided by Web Service.

Fault Tolerance Architecture For Web Services

In many situations such as online banking,

stock trading, reservation processing, and shopping

erroneous processing or outages are not acceptable,

so fault tolerance is a key issue of web services.

Fault tolerance makes to achieve system

dependability. Dependability is related to some QoS

aspects provided by the system, it includes the

attributes like availability and reliability. Fault

tolerance techniques are often used to increase the

reliability and availability.

Prof. Seema Patil.et.al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 3, (Part -5) March 2016, pp.39-44

 www.ijera.com 41 | P a g e

In client-transparent fault tolerance, the

client sends the request and waits for the reply and

the logic is handled on the server side. The proposed

architecture is client transparent; clients

communicate with Request Handler and are unaware

of server replication. This architecture is involved

six components and is fault tolerance even for

requests being processed at the time of server

failure. It is based on N-Version, active replications

and logging request and reply messages at

application and transport levels.

The proposed fault tolerant architecture for

web services consists of six components: (1)

Request Handler, (2) Logger, (3) Reply Handler, (4)

Log Cleaner, (5) Fault Detector, (6) Replication

Manager. Figure 2 illustrates the high level

components of the architecture.

Figure 2 the fault tolerant architecture and its

components

Request Handler:

This component is responsible for receiving

requests from clients and transfers them to Logger.

Request Handler will be sure of request logging by

receiving an acknowledgment from Logger. It is

responsible for sending requests to Servers after

receiving the acknowledgment, too.

Logger:

 It is consisted of four sub components:

HTTP Request Logger, HTTP Reply Logger,

TCP/IP Packets of Request Logger and TCP/IP

Packets of Reply Logger. Figure 3 illustrates the sub

components of Logger.

Reply Handler:
This component is responsible for

transferring received replies from Servers and voter

to Logger. Reply Handler will be sure of logging

replies by receiving an acknowledgment from

Logger, then sending replies to Client.

Log Cleaner:

This component removes the logged

messages of requests that were terminated and their

replies were sent to the clients.

Fault Detector:

It detects software and hardware failures

and notifies to Replication Manager appropriately.

The software failures can be detected by port

scanning. For example, by checking whether a

particular port is active (if an application server is up

and running). The hardware or network failure is

detected by using the Internet Control Message

Protocol (ICMP protocol). ICMP echo requests are

sent to each machine periodically. Fault Detector

waits for a certain time period to receive a reply. It

then resends the ICMP request and waits for a reply.

If it does not get a reply to the resent request, Fault

Detector decides that particular machine has failed.

Replication Manager:

It is responsible for maintaining replicated

servers. For example, when Fault Detector notifies a

failure to Replication Manager, it selects one of the

backup servers instead of failure server.

 This architecture carries out a set of web services.

The web services run on different hardware, using

different operating systems and different web

servers. When Request Handler receives a request

from a client, it is sent to all of the server replicas.

Each replica computes the result independently and

sends it to the voter. After the execution of a voting

scheme, the reply is transferred to Reply Handler.

Active replication, NVersion techniques and logging

request and reply messages at application and

transport level cause high availability and reliability.

Operations of receiving, processing and sending

reply of request are shown below.

Step Operation:

1 Client sends a request to Request Handler.

2 Request Handler accepts the request and

transfers it to Logger.

3 TCP/IP Packets of Request Logger logs the

request at transport level.

4 HTTP Request Logger logs the request at

application level too.

5 Logger sends the acknowledgment of request to

Request Handler.

6 Request Handler forwards the request to the

servers and an acknowledgment to Client.

7 The servers process the request independently

and forward the reply to Reply Handler.

8 Reply Handler sends replies of Servers to

Logger.

9 TCP/IP Packets of Reply Logger logs the reply

at transport level.

10 HTTP Reply Logger logs the reply at

application level too.

11 Logger sends the acknowledgments of replies to

Reply Handler.

12 After logging of replies, Servers send back

replies to Voter.

Prof. Seema Patil.et.al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 3, (Part -5) March 2016, pp.39-44

 www.ijera.com 42 | P a g e

13 After the execution of a voting scheme, Voter

transfers the reply to Reply Handler.

14 Reply Handler sends the reply to Logger.

15 TCP/IP Packets of Reply Logger stores the

reply at transport level.

16 HTTP Reply Logger logs the reply at

application level too.

17 Logger sends the acknowledgment of reply to

Reply Handler.

18 Reply Handler forwards the reply to Client with

Request Handler’s Address (Client only knows

the address of Request Handler).

19 Client sends the acknowledgment to Request

Handler.

20 Request Handler notifies Log Cleaner to

removes the logged data about the request.

21 Log Cleaner removes the logged data about the

terminated request.

If any fault or failure is detected by Fault Detector,

the following operations are done:

• Fault Detector detects a failure (software or

hardware failure) in one or more servers.

• Fault Detector notifies Replication Manager

about the failure.

• Replication Manager selects one of the backup

servers instead of failure server.

• Replication Manager notifies Request Handler,

Reply Handler and Voter about the address of

new server.

The mechanism used to recover from server

failures that occur during different phases, is as

follows:

• In the event of a server failure, the backup

server replica must be replaced by Replication

Manager and continue providing service to

Client, including handling of inprogress

requests.

• When Server (or Servers) is failed, Request

Handler does not receive acknowledgment from

Client, Request Handler retransmits the request

to Servers by using logged data of Logger. The

replaced server receives the request but other

servers ignore retransmitted request as

duplicate.

• The replaced server processes the request and

transfers the reply to Reply Handler for logging

and next forwards it to Voter.

• Other servers ask Reply Handler for sending

themselves logged replies and then forward

them to Voter.

• After the execution of a voting scheme, Voter

transfers the reply to Reply Handler and other

described operations are done.

Peer To Peer Web Service Architecture

To better cope with the fundamental issues

of the traditional client-server based web service

architecture, peer to peer web services have been

introduced and it has become a new research area in

web service arena. There is no clear cut distinction

between service providers and service consumers in

peer to peer approach. This make the peer service

model more dynamic and resilient. The fully

distributed nature of the peer to peer architecture

leads to minimize the central point of failure and

each peer can communicate and provide services

directly with each other without any centralized

control.

 This architecture allows flexible interaction

among peer web services using the mobility

behavior of the channels in MoCha (MOBILE

CHANNEL)based peer to peer environment. The

entire peer to peer architecture is built on top of

MoCha middleware and peers communicate with

each other through mobile channels in case of

joining the network, service discovery and service

invocation. Another desirable property that is to be

achieved with this study is to introduce fault

tolerance in order to deal with peer failure in web

service invocation time.

Here the main focus is to introduce a

distributed approach for web service publishing,

discovery and use mobile channels to build up a

flexible web service interaction mechanism.

Figure 3 depicts the layered view of the peer to peer

web service architecture.

Figure 3 Layered view of MoCha based peer to

peer web service architecture

1) Service Publish and Discovery:

Each service provider peer in the network

maintains their own registry which contains their

own services as well as services provided by their

neighbors (any connected peer to a particular peer at

a moment). The registry is a directory of the peers

local file system. Each service is associated with a

service detail file (Serialized Service Detail) which

is stored in the service directory of the peers local

file system. This file contains service specific

information related to a service in XML format. The

Service Detail Serializer creates this file when a

Prof. Seema Patil.et.al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 3, (Part -5) March 2016, pp.39-44

 www.ijera.com 43 | P a g e

service is published. Each service provider peer

maintains two data structures. One data structure

contains the services provided by that peer. The

other data structure is used to maintain the services

provided by neighbor peers. A peer can request the

service lists from other connected peer and store

them in that data structure. This approach is efficient

the service discovery process.

Any potential service consumer peer may

first connect to a service provider peer and then it

can request services from it. When a service

provider peer gets a service lookup request, it first

queries the data structure which contains the services

provided by that peer. If the requested service is

found within that peer the public interface (WSDL

file) related to that service is sent to the service

requester. If the requested service is unavailable

within that peer, it queries the data structure which

contains the services provided by the neighbor peers.

If the service is found at any neighbor peer, the

service lookup request is directed to that particular

peer as it can respond to that request. This kind of

behavior can be achieved due to the mobility nature

of the connections among peers.

2) Service Description:
This specifies the description of a web

service in XML format. As usual WSDL is used to

describe the operations, data types and parameters

related to a web service. The Serialized Service

Detail for a given web service is used to persists the

details such as service name, service class name,

WSDL document name, WSDL document location

of the peers local file system and access details of

the service in XML notations. The Serialize Service

Details will be also used in service deployment as

well as in service invocation.

3) Messaging:
Here MoCha has been used as the transport

medium for web service related interactions. The

current version of MoCha supports any serialized

object to be passed through the channels. Therefore

Channel Message has been introduced as it provides

serialized messaging format that can be transmitted

through MoCha channels. SOAP is the most widely

using messaging standard for sending web service

invocation requests and responses. Therefore SOAP

has been combined with Channels Messages in case

of web service invocations.

4) Transport:
The peer to peer web service architecture is

built on top of this MoCha based network

infrastructure. So MoCha has to be used as the

transport medium of the web service architecture, a

depicted Figure 5.2. The MoCha Transport Sender is

responsible in sending service invocation messages

to the service provider in case of web service

invocation. The Sink End Listener always listens to

the sink channel end in order to read messages from

its channel. The MoCha Transport defines the

mobile channel based transport for web service

invocations.

Web Service Replication For Fault Tolerance

In a peer to peer environment peers may not

be up and running all the time. Unavailability of a

particular peer may lead to unavailability of whole

set of services provided by that peer. In order to deal

with peer failures and unavailability of peers a web

service can be replicated and deployed among

several peers. The fault tolerance mechanism

proposed here increases the availability of a service

in service invocation time in the presence of peer

failures and unavailability of peers.

When a consumer invokes a replicated

service, first it invokes the service at the master

service provider as depicted in Figure 4 If the master

service provider has crashed or unavailable, then the

consumer may iteratively invoke the service at

replicated peers until it finds a live peer.

Figure 4 Web service replication and invocation

II. CONCLUSION
The increasing adoption of the web services

needs efficient, scalable alternatives to the

traditional client-server model for service discovery

and invocation. As a solution for that client-

transparent fault tolerance architecture for web

services have evolved that correctly handles client

requests, including those in progress at the time of

server failure. It can recover requests being

processed at the time of server failure by logging of

request and reply messages Because of redundancy,

it has overhead but provides high availability and

reliability for web services. Peer to Peer web service

architecture enables deploying, publishing,

discovering and invoking web services in MoCha

based peer to peer network infrastructure.

REFERENCES
[1]. Xuelei Wu, Jia Chen, Bilan Rong. “Web

Service Architecture and Application

Research”, E-Business and Information

System Security, International Conference,

Page number 1 - 5, 23-24 May 2009.

Replicated

Service

Replicated

Service

Prof. Seema Patil.et.al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 3, (Part -5) March 2016, pp.39-44

 www.ijera.com 44 | P a g e

[2]. Aghaei S., Khayyambashi M.R.,

Nematbakhsh M.A. “A Fault Tolerant

Architecture for Web Services”,

Innovations in Information Technology

(IIT), 2011 International Conference, Page

number 53 - 56, 25-27 April 2011.

[3]. Sanjeewa P.A.A., Ranasinghe D. N. “A

peer to peer web service architecture based

on MoCha”, Information and Automation

for Sustainability (ICIAFs), 0 5th

International Conference, Page number

207- 212, 17-19 Dec. 2010.

[4]. Zimmermann,M.; “A Web Service

Architecture for VoIP Services”, Internet

and Web Applications and Services

(ICIW), Fifth International Conference,

Page number 445-450, 9-15 May 2010.

[5]. Ajlan Al-Ajlan, Hussein Zedan. “The

Extension of Web Services Architecture to

Meet the Technical Requirements of

Virtual Learning Environments (Moodle)”,

Page number 27- 32, 2008.

[6]. Aghdaie N., Tamir Y., “CoRAL: A

transparent fault-tolerant web service”, The

Journal of Systems and Software, 2008.

[7]. Wei Chuyuan, “The Exploration of Web

Services Architecture and Implementation

Mechanism”, Journal, Aeronautical

Computer Technique, Page number 103-

104, 2003.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Aghaei,%20S..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Khayyambashi,%20M.R..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Nematbakhsh,%20M.A..QT.&newsearch=partialPref

